第二種

学科試験

〔試験時間 2時間〕

令和7年度下期

試験が始まる前に、次の注意事項をよく読んでおいてください。 受験番号とマーキングが正しいか 受験票と照合してください

- 1. 答案用紙(マークシート)の記入方法について
 - (1) HBの鉛筆(又はHBの芯を用いたシャープペンシル)を使用して、答案用紙に例示された「良い例」にならって、マーク(濃く塗りつぶす)してください。 塗りつぶしが薄く、機械で読み取れない場合は、採点されません。 色鉛筆及びボールペン等は、絶対に使用しないでください。
 - (2) 訂正する場合は、プラスチック消しゴムできれいに、完全に消してください。
 - (3) 答案用紙の記入欄,解答欄以外の余白及び裏面には,何も記入しないでください。
 - (4) 答案用紙に印字された, 受験番号及び受験番号の塗りつぶしマークが自分の受験票の受験番号と一致しているか確認した後, 記入欄に氏名, 生年月日を必ず記入してください。
 - 注) 受験番号が間違っているマークシートの場合は、試験監督員に申し出てください。
- 2. 解答の記入方法について
 - (1) 解答は四肢択一式ですから、1問につき答えを1つだけ選択(マーク)してください。**』**■
 - (2) 答案用紙に解答を記入する場合は、次の例にならって答案用紙の解答欄の符号にマークしてください。

(解答記入例)

問い	答え		
日本で一番人口の多い都道府県は。	イ. 北海道 ロ. 東京都 ハ. 大阪府 ニ. 沖縄県		

正解は「ロ.」ですから、答案用紙には、

のように正解と思う選択肢記号の () を濃く塗りつぶしてください。

答案用紙は、機械で読み取りますので、「1. 答案用紙(マークシート)の記入方法について」、「2. 解答の記入方法について」の 指示に従わない場合は、採点されませんので特に注意してください。

<学科試験受験上の注意事項>

- (1) 電卓(電子式卓上計算機), スマートフォン, 携帯電話及び電卓機能・通信機能のある時計等は, 使用できません。 (持参した場合は, 電源を切って, しまっておいてください)
- (2) 机の上に出してよいものは、次のものだけです。
 - ・受験票 ・HBの鉛筆(シャープペンシルを含む) ・鉛筆削り ・プラスチック消しゴム ・時計
 - ・定規 ・ストップウォッチ ・眼鏡 ・ルーペ ・色鉛筆 ・色ボールペン ・蛍光ペン ・マジック

試験問題に使用する図記号等と国際規格の本試験での取り扱いについて

1. 試験問題に使用する図記号等

試験問題に用いる図記号は、原則として「JIS C 0617-1~13 電気用図記号」及び「JIS C 0303:2000 構内電気設備の配線用図記号」を使用することとします。

2. 「電気設備の技術基準の解釈」の適用について

「電気設備の技術基準の解釈」の第218条,第219条の「国際規格の取り入れ」の条項は本試験には適用しません。

● 4A 002 - 2 -

この頁を開くと試験問題となっています。

「問題 2. 配線図」(11頁)に関する図面は、15頁にありますので、見やすい方法(右側に半分程度ずらすか、又は引き抜く)で、ご覧ください。

● 4A 004 - 4 -

問題1. 一般問題 (問題数30, 配点は1問当たり2点)

【注】本問題の計算で $\sqrt{2}$, $\sqrt{3}$ 及び円周率 π を使用する場合の数値は次によること。 $\sqrt{2}$ = 1.41 , $\sqrt{3}$ = 1.73 , π = 3.14 次の各問いには4通りの答え($\mathbf{1}$, $\mathbf{1}$, $\mathbf{1}$, $\mathbf{1}$ が書いてある。それぞれの問いに対して答えを $\mathbf{1}$ つ選びなさい。

なお、選択肢が数値の場合は最も近い値を選びなさい。

	問い	答え			
1	図のような回路で、端子 \mathbf{a} - \mathbf{b} 間の合成抵抗 $[\Omega]$ は。 \mathbf{a} \mathbf{a} \mathbf{b}	イ. 1 ロ. 2 ハ. 3 ニ. 4			
2	抵抗 R [Ω] に電圧 V [V] を加えると,電流 I [A] が流れ, P [W] の電力が消費される場合,抵抗 R [Ω] を示す式として,誤っているものは。				
3	電熱器により、60 kg の水の温度を20 K 上昇 させるのに必要な電力量 [kW·h] は。 ただし、水の比熱は4.2 kJ /(kg・K)とし、 熱効率は100 %とする。	イ. 1.0 ロ. 1.2 ハ. 1.4 =. 1.6			
4	図のような正弦波交流回路の電源電圧 v に対する電流 i の波形として, 正しいものは 。 i \longrightarrow L	7. $0 \qquad \qquad 0 \qquad \qquad 0 \qquad \qquad 360^{\circ}$ 7. $0 \qquad \qquad 0 \qquad \qquad \qquad 0 \qquad \qquad \qquad 0 $			
5	図のような三相負荷に三相交流電圧を加えたとき、各線に 20 Aの電流が流れた。線間電圧 E [V] は。 $\frac{20\mathrm{A}}{\mathrm{E}[\mathrm{V}]}$ $\frac{20\mathrm{A}}{\mathrm{E}[\mathrm{V}]}$ $\frac{20\mathrm{A}}{\mathrm{E}[\mathrm{V}]}$	イ. 120 ロ. 173 ハ. 208 ニ. 240			

問しい		<i>5</i> 7.	答 え	
図のような三相 3 線式回路について,図中の ***の箇所で断線した場合,負荷の全消費電力 [kW] は。 ただし,負荷の抵抗は、30 Ωとし,配線の抵抗は無視し、電源電圧は一定とする。 3	イ. 0.7	□. 0.9	Λ. 1.3	= . 2.0
図のような単相 3 線式回路において,電線 1 線当たりの抵抗が 0.2 Ωのとき, a-b 間の電圧 [V]は。 0.2 Ω 1 φ 3W 208 V 電源 208 V 0.2 Ω b 104 V 10 A 抵抗負荷 0.2 Ω	イ. 96	□. 100	Λ. 102	= . 106
低圧屋内配線の合成樹脂管工事で、管内に 直径 2.0 mm の 600V ビニル絶縁電線(軟銅線) を 4 本収めて施設した場合、電線 1 本当たり の許容電流 [A] は。 ただし、周囲温度は 30℃以下とする。	イ. 17	□. 19	11. 22	= . 24
図のように定格電流 50 A の過電流遮断器で 保護された低圧屋内幹線から分岐して, 7 m の 位置に過電流遮断器を施設するとき, a-b間の 電線の許容電流の最小値 [A] は。	イ. 12.5	□. 17.5	Λ. 22.5	= . 27.5

● 4A 006 - 6 -

	問い	答 え			
10	低圧屋内配線の分岐回路の設計で、配線用 遮断器、分岐回路の電線の太さ及びコンセント の組合せとして、適切なものは。 ただし、分岐点から配線用遮断器までは 3 m、配線用遮断器からコンセントまでは 8 mとし、電線の数値は分岐回路の電線(軟銅線)の太さを示す。 また、コンセントは兼用コンセントでは ないものとする。	イ.			
11	金属線ぴ工事に使用する金属製線ぴに関する記述として, 正しいものは 。	 イ. 壁等に固定して絶縁電線(屋外用ビニル絶縁電線を除く。)を収める。 ロ. コンクリート床内に埋め込んで絶縁電線を収める。 ハ. 本体と導体とが一体となった材料で、照明器具等を直接取り付けて使用する。 ニ. 天井等につるし、ケーブルを並べて支持するのに用いる。 			
12	600V ポリエチレン絶縁耐燃性ポリエチレンシースケーブル平形の絶縁物の最高許容温度 [℃] は。	イ. 60 ロ. 75 ハ. 90 =. 120			
13	ねじなし電線管の曲げ加工に使用する工具は。	 イ. トーチランプ ロ. ディスクグラインダ ハ. パイプレンチ ニ. パイプベンダ 			
14	必要に応じ,スターデルタ始動を行う電動機 は。	イ. 一般用三相かご形誘導電動機ロ. 三相巻線形誘導電動機ハ. 直流分巻電動機ニ. 単相誘導電動機			
15	系統連系型の小出力太陽光発電設備において, 使用される機器は 。	イ. 調光器ロ. 低圧進相コンデンサハ. 自動点滅器ニ. パワーコンディショナ			
16	写真に示す材料の名称は。	 イ. ユニバーサル ロ. ノーマルベンド ハ. ベンダ ニ. カップリング 			

	問い	答 え
17	写真に示す器具の用途は。	イ. 照明器具の明るさを調整するのに用いる。 ロ. 人の接近による自動点滅器に用いる。 ハ. 蛍光灯の力率改善に用いる。 ニ. 周囲の明るさに応じて街路灯などを自動点滅させるのに用いる。
18	写真に示す工具の用途は。	 イ. 電線の支線として用いる。 ロ. 太い電線を曲げてくせをつけるのに用いる。 ハ. 施工時の電線管の回転等すべり止めに用いる。 ニ. 架空線のたるみを調整するのに用いる。
19	低圧屋内配線工事で、600 V ビニル絶縁電線 (軟銅線) をリングスリーブ用圧着工具とリングスリーブ (E 形)を用いて終端接続を行った。接続する電線に適合するリングスリーブの種類と圧着マーク(刻印)の組合せで、 不適切なものは 。	 イ. 直径 2.0 mm 3本の接続に、中スリーブを使用して圧着マークを中にした。 ロ. 直径 1.6 mm 3本の接続に、小スリーブを使用して圧着マークを小にした。 ハ. 直径 2.0 mm 2本の接続に、中スリーブを使用して圧着マークを中にした。 ニ. 直径 1.6 mm 1本と直径 2.0 mm 2本の接続に、中スリーブを使用して圧着マークを中にした。
20	単相3線式100/200Vの電力が供給されている2階建て木造住宅の低圧屋内配線工事として、不適切なものは。	 イ. 乾燥した場所の天井ふところに、600V ビニル絶縁ビニルシースケーブル平形を用いた、ケーブル工事を行った。 ロ. 乾燥した場所の点検口のある天井裏に、600V ビニル絶縁電線を合成樹脂製可とう電線管(CD管)に通線して、施工した。 ハ. 湿気の多い場所の床下に、硬質ポリ塩化ビニル電線管による合成樹脂管工事を行った。 ニ. 展開した場所で乾燥した場所の居間に、ライティングダクト工事を行った。
21	使用電圧 200 V の三相電動機回路の施工方法で、 不適切なものは 。	 イ. 湿気の多い場所に1種金属製可とう電線管を用いた金属可とう電線管工事を行った。 ロ. 造営材に沿って取り付けた 600V ビニル絶縁ビニルシースケーブルの支持点間の距離を2m以下とした。 ハ. 金属管工事に 600V ビニル絶縁電線を使用した。 ニ. 乾燥した場所の金属管工事で、管の長さが3mなので金属管のD種接地工事を省略した。

問しい		答え			
22	D種接地工事を 省略できないものは 。 ただし、電路には定格感度電流30 mA,動作時間が0.1秒以下の電流動作型の漏電遮断器が取り付けられているものとする。				
23	電磁的不平衡を生じないように、電線を金属管に挿入する方法として、適切なものは。	イ. 3 Ø 3 W 電 源 負荷 負荷 負荷 目前			
24	次の①~④は、一般用電気工作物の低圧屋内配線工事が完了したときの検査の内容を示したものである。空欄(A)、(B)及び(C)に当てはまるものの組合せとして、 適切なものは 。 ① 目視点検:目視で電気設備が適切に設置されているか確認する。 ② 絶縁抵抗の測定:	イ. (A)無充電状態の回路 ロ. (A)充電状態の回路 (B)測定接地極 (C)検電器 (C)回路計 (C)検電器 ハ. (A)無充電状態の回路 ニ. (A)充電状態の回路 (B)補助接地極 (B)補助接地極 (C)回路計 (C)検電器			
25	絶縁抵抗測定が困難なので、単相100/200 V の分電盤の各分岐回路に対し、使用電圧が加わった状態で、クランプ形漏れ電流計を用いて、漏えい電流を測定した。その測定結果は、使用電圧100 VのA回路は0.5 mA、使用電圧200 VのB回路は1.5 mA、使用電圧100 VのC回路は3 mAであった。絶縁性能が「電気設備の技術基準の解釈」に適合している回路は。	 イ. すべて適合している。 ロ. A回路とB回路が適合している。 ハ. A回路のみが適合している。 ニ. すべて適合していない。 			

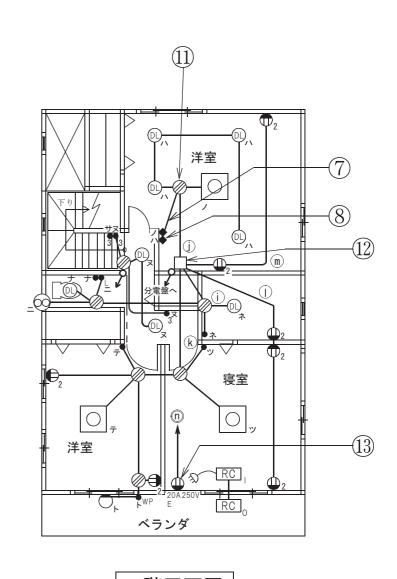
問い		答え		
26	直読式接地抵抗計(アーステスタ)を使用して直読で接地抵抗を測定する場合,補助接地極(2箇所)の配置として,適切なものは。	 イ. 被測定接地極を端とし、一直線上に 2 箇所の補助接地極を順次 10 m 程度離して配置する。 ロ. 被測定接地極を中央にして、左右一直線上に補助接地極を 5 m 程度離して配置する。 ハ. 被測定接地極を端とし、一直線上に 2 箇所の補助接地極を順次 1 m 程度離して配置する。 ニ. 被測定接地極と 2 箇所の補助接地極を相互に 5 m 程度離して正三角形に配置する。 		
27	直読式指示電気計器の目盛板に図のような 記号があった。記号の意味として 正しいもの は。	 イ. 永久磁石可動コイル形で目盛板を水平に置いて使用する。 ロ. 永久磁石可動コイル形で目盛板を鉛直に立てて使用する。 ハ. 誘導形で目盛板を水平に置いて使用する。 ニ. 可動鉄片形で目盛板を鉛直に立てて使用する。 		
28	電気の保安に関する法令についての記述と して, 誤っているものは 。	 イ.「電気工事士法」は、電気工事の作業に従事する者の資格及び義務を定めた法律である。 ロ.「電気設備に関する技術基準を定める省令」は、電気事業法の規定に基づき定められた経済産業省令である。 ハ.「電気用品安全法」は、電気用品の製造、販売等を規制し、電気用品の安全性を確保するために定めた法律で電気用品による危険及び障害の発生を防止することを目的とする。 ニ.「電気用品安全法」において、「一般用電気工作物等」と「自家用電気工作物」を定義している。 		
29	「電気用品安全法」の適用を受ける次の電気用品のうち、特定電気用品は。	 イ. 定格電流 20 A の配線用遮断器 ロ. 消費電力 30 W の換気扇 ハ. 外径 19 mm の金属製の電線管 ニ. 消費電力 1 kW の電気ストーブ 		
30	「電気設備に関する技術基準を定める省令」 に関する記述として、 誤っているものは 。	 イ. 電圧の種別である低圧、高圧及び特別高圧を規定している。 ロ. 電気設備は、感電、火災その他人体に危害を及ぼし、又は物件に損傷を与えるおそれがないように施設しなければならないと規定している。 ハ. 「電線」とは、電気使用場所において施設する電線(電気機械器具内の電線及び電線路の電線を除く。)をいうと定義している。 ニ. 「電気機械器具」とは、電路を構成する機械器具をいうと定義している。 		

図は、木造 2 階建住宅の配線図である。この図に関する次の各問いには4通りの答え($\mathbf{7}$, $\mathbf{0}$, $\mathbf{7}$, $\mathbf{7}$) が書いてある。それぞれの問いに対して、答えを $\mathbf{1}$ つ選びなさい。

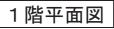
【注意】 1. 屋内配線の工事は、特記のある場合を除き 600V ビニル絶縁ビニルシースケーブル平形 (VVF)を用いたケーブル工事である。

- 2. 屋内配線等の電線の本数、電線の太さ、その他、問いに直接関係のない部分等は省略又は簡略化してある。
- 3. 漏電遮断器は、定格感度電流 30 mA、動作時間 0.1 秒以内のものを使用している。
- 4. 選択肢(答え)の写真にあるコンセント及び点滅器は、「JIS C 0303:2000 構内電気設備の配線用図記号」で示す「一般形」である。
- 5. 分電盤の外箱は合成樹脂製である。
- 6. ジョイントボックスを経由する電線は、すべて接続箇所を設けている。
- 7.3路スイッチの記号「0」の端子には、電源側又は負荷側の電線を結線する。

	問い	答え			
31	①で示す部分の工事方法として, 適切なものは 。	イ. 金属可とう電線管工事ロ. 金属線び工事ハ. 600V ビニル絶縁ビニルシースケーブル丸形を使用したクニ. 金属管工事	アーブル工事		
32	②で示す図記号の器具の種類は。	イ. 接地極付コンセントロ. 接地端子付コンハ. 接地極付接地端子付コンセント二. 漏電遮断器付コ			
33	③で示す部分の小勢力回路で使用できる電圧 の最大値 [V] は。	イ. 24 ロ. 30 ハ. 40	=. 60		
34	④で示す部分の配線で(VE28)とあるのは。	 イ. 内径 28 mm の硬質ポリ塩化ビニル電線管 ロ. 内径 28 mm の合成樹脂製可とう電線管 ハ. 外径 28 mm の硬質ポリ塩化ビニル電線管 ニ. 外径 28 mm の合成樹脂製可とう電線管 			
35	⑤で示す図記号の名称は。	 イ. 600V 耐燃性ポリエチレン絶縁電線 ロ. 600V 架橋ポリエチレン絶縁耐燃性ポリエチレンシースケーブル ハ. 600V 耐燃性架橋ポリエチレン絶縁電線 ニ. 600V ポリエチレン絶縁耐燃性ポリエチレンシースケーブル平形 			
36	⑥で示す図記号の名称は。	イ. ジャンクションボックスロ. ジョイントボックスハ. VVF 用ジョイントボックスニ. プルボックス			
37	⑦で示す部分の最少電線本数(心線数)は。	イ. 2 ロ. 3 ハ. 4	= . 5		
38	⑧で示す図記号の名称は。	イ. 一般形調光器ロ. ワイド形調光器ハ. 一般形点滅器ニ. ワイドハンドル			
39	⑨で示す部分の電路と大地間の絶縁抵抗として, 許容される最小値 [MΩ] は。	イ. 0.1 ロ. 0.2 ハ. 0.3	=. 0.4		
40	⑩で示す部分の接地工事の種類及びその接地 抵抗の許容される最大値 [Ω] の組合せとし て、 正しいものは 。	イ. C種接地工事 10 Ωロ. C種接地工事 3ハ. D種接地工事 100 Ωニ. D種接地工事 3			


(次頁へ続く)

問い答え			答	à	
41	⑪で示すボックス内の接続をすべて差込形コネクタとする場合,使用する差込形コネクタの種類と最少個数の組合せで,正しいものは。ただし,使用する電線はすべて VVF1.6 とする。	4個	2個	7. 3個	二. 3個 1個 1個
42	⑫で示す図記号のものは。	1.		/\.	- C T WI
43	(3)で示す図記号の器具は。				
44	④で示す図記号の器具は。	2P2E JIS C 8211 Ann2 AC100/200V Icn1. 5kA 20A	は は は は は は は は に で の に で の に で の に で の に で の に で の に で の に の の の の の の の の の の の の の		
45	⑤で示す部分の配線工事に 必要なケーブルは。 ただし、使用するケーブル の心線数は最少とする。	20A 110/220V IC1.5kA 60°C CABLE AT25°C	100VICI.SkA 20A 定格何度電流 30mA 黑座型 中型平不動作型 定格不動作電流15mA 動作時間0.1秒以内 50/60Hz 電流動作型 屋内用	版 100 2001 (254 20A 定格 20 4 20 4 20 4 20 4 20 4 20 4 20 4 20	PS 110V 20A (回路図) 60°C CABLE AT25°C L/ IN


	問い			え	
46	(B)で示すボックス内の接続をリングスリーブで圧着接続した場合のリングスリーブの種類、個数及び圧着接続後の刻印との組合せで、正しいものは。ただし、使用する電線はすべて VVF1.6 とする。また、写真に示すリングスリーブ中央の〇、小、中は刻印を表す。なお、ボックスからスイーブルの心線数は最少とする。	イ. (1)小) (1)() (1	口. (1)小) (1)〇) 小 5個	ハ. 中 1個 ()()()()()()()()()()()()()()()()()()()	二.
47	⑪で示すボックス内の接続をすべて圧着接続とする場合,使用するリングスリーブの種類と最少個数の組合せで,正しいものは。ただし,使用する電線はすべて VVF1.6 とする。	イ. 小 3個	口. 小 4個	ハ. 小 2個 中 2個	二. 小 2個 中 1個
48	この配線図で, 使用されていないスイッチは。 ただし, 写真下の図は, 接点の構成を示す。	1.	選れ機構		
49	この配線図の2階部分の施工で、一般的に使用されることのないものは。	1.		^.	
50	この配線図の施工で、一般 的に使用されることのない ものは。	1.	п. П	/\.	-

● 4A 014

図面を引き抜いてご覧ください

2階平面図

1**ø**3W 100/200V

アの台所

居間

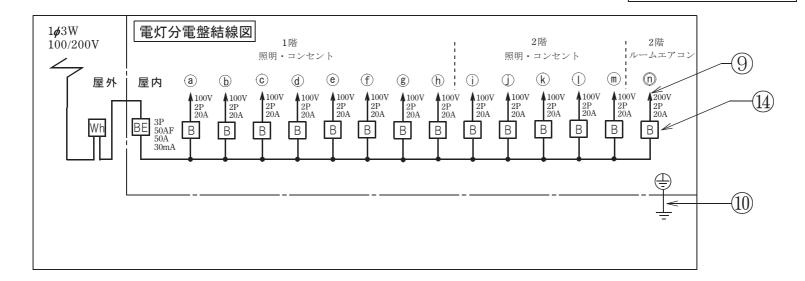
庭

(16)

玄関

和室

駐車場


 \bigcirc

(15)

6

4

| ○ ○ | 回 印は単相100V回路 | □ 印は単相200V回路 | □ は電灯分電盤

